M1.(a) (i) $\quad \Delta H=\Sigma$ (enthalpies formation products) $-\Sigma$ (enthalpies formation reactants)
Or correct cycle with enthalpy changes labelled

$$
=-111-(-75-242)
$$

$$
=(+) 206\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)
$$

-206 scores 1 only
Units not essential if ans in $\mathrm{kJ} \mathrm{mol}^{-1}$ but penalise incorrect units
(ii) $\Delta S=\Sigma$ (entropies of products) $-\Sigma$ (entropies reactants)
$=198+3 \times 131-(186+189)$
$=(+) 216\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)$
OR
$0.216 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Units not essential but penalise incorrect units
(b) When $\Delta G=0$ OR $\Delta H=T \Delta S$
$T=\Delta H / \Delta S$
M2 also scores M1
$=206 \times 1000 / 216$
Allow error carried forward from (a)(i) and (a)(ii) Ignore unexplained change of sign from - to +
$=954 \underline{K}$
Allow 953-955, Units of K essential, must be +ve If values from (a)(i) and (a)(ii) lead to negative value in M3 allow M1 to M3 but do not allow negative temperature for M4 If negative value changed to positive for M4, allow M4
(c) To speed up the rate of reaction OR wtte

> Allow so that more molecules have energy greater than the activation energy
> IF T in (b) > 1300 allow answers such as;
> to reduce energy cost
> to slow down reaction
> do NOT allow to increase rate
(d) (i) Method 1
$\Delta G=\Delta H-T \Delta S$
$\Delta G=-41-(1300 \times-42 / 1000)(\mathrm{M} 1)$
If 42 and not 42 / 1000 used can score M3 only
but allow $\Delta G=-41 \times 1000-(1300 \times-42)(M 1)$
$=+13.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$=13600 \mathrm{~J} \mathrm{~mol}^{-1}$ (M2)
Units essential
ΔG must be negative for the reaction to be feasible.
OR ΔG is positive so reaction is not feasible

Method 2

For reaction to be feasible ΔG must be negative or zero

T when $\Delta G=0=\Delta H / \Delta S=976 K$
ΔS is -ve so ΔG must be + ve at temperatures above $976 \mathrm{~K} /$ at 1300 K
(ii) If the temperature is lowered
(Ignore reference to catalyst and / or pressure)
Alternative mark scheme (if T is calculated)
Allow T reduced to 976 K or lower M1
ΔG will become (more) negative because
the $-T \Delta S$ term will be less positive $/ T \Delta S>\Delta H$
At this temperature (the reaction becomes feasible because) $\Delta G<=0 M 2$

M2.(a) $\quad \Delta S=238+189-214-3 \times 131=-180 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
\Delta G=\Delta H-T \Delta S
$$

(b) When $\Delta G=0, \Delta H=T \Delta S$ therefore $T=\Delta H / \Delta S$

$$
\begin{aligned}
& =-49 \times 1000 /-180=272(\mathrm{~K}) \\
& \quad \text { Mark consequentially to } \Delta \mathrm{S} \text { in part (a) }
\end{aligned}
$$

(c) Diagram marks

Diagram of a molecule showing $\mathrm{O}-\mathrm{H}$ bond and two lone pairs on each oxygen

Labels on diagram showing $\delta+$ and δ - charges
Allow explanation of position of $\delta+$ and δ - charges on H and 0

Diagram showing $\delta+$ hydrogen on one molecule attracted to lone pair on a second molecule

Explanation mark
Hydrogen bonding (the name mentioned) is a strong enough force (to hold methanol molecules together in a liquid)

M3.(a) An electron pair on the ligand

Is donated from the ligand to the central metal ion
(b) Blue precipitate

Dissolves to give a dark blue solution
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4}^{+}$
$\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}+4 \mathrm{NH}_{3} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{H}_{2} \mathrm{O}$
(c) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+2 \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \longrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+$ 4NH3
(d) $\mathrm{Cu}-\mathrm{N}$ bonds formed have similar enthalpy / energy to $\mathrm{Cu}-\mathrm{N}$ bonds broken

And the same number of bonds broken and made
(e) 3 particles form 5 particles / disorder increases because more particles are formed / entropy change is positive

M4.(a) Enthalpy change / ΔH when 1 mol of a gaseous ion
Enthalpy change for $X^{+/}(\mathrm{g}) \rightarrow X^{+/}(\mathrm{aq})$ scores M1 and M2
(b) $\Delta H($ solution $)=\Delta H($ lattice $)+\underline{\sum}(\Delta H$ hydration $)$
$\mathrm{OR}+77=+905-464+\Delta H($ hydration, Cl$)$
OR $\Delta H($ hydration, Cl$)=+77-905+464$
Allow any one of these three for M1 even if one is incorrect
$=-364\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
Allow no units, penalise incorrect units, allow kJ mol
Allow lower case j for J (Joules)
+364 does not score M2 but look back for correct M1
(c) Water is polar / water has $\mathrm{H} \delta+$
(Chloride ion) attracts (the H in) water molecules
(note chloride ion can be implied from the question stem)
Idea that there is a force of attraction between the chloride ion and water
Do not allow H bonds / dipole-dipole / vdW / intermolecular but ignore loose mention of bonding
Do not allow just chlorine or chlorine atoms / ion Mark independently
(d) $\Delta G=\Delta H-T \Delta S$

Look for this equation in part (d) and / or (e); equation can be stated or implied by correct use. Record the mark in part (d)
$(\Delta G=0$ so) $T=\Delta H / \Delta S$
$T=77 \times 1000 / 33=2333 \underline{K}$ (allow range 2300 to 2333.3)
Units essential, allow lower case k for K (Kelvin)
Correct answer with units scores M1, M2 and M3
2.3 (K) scores M1 and M2 but not M3

Above the boiling point of water (therefore too high to be sensible) / water

would evaporate

Can only score this mark if M3 >373 K
(e) $\quad \Delta S=(\Delta H-\Delta G) / T$ OR $\Delta S=(\Delta G-\Delta H) /-T$
$=((-15+9) \times 1000) / 298$ OR $(-15+9) / 298$
$=-20 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \quad \mathrm{OR}-0.020 \mathrm{~kJ} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
(allow -20 to -20.2) (allow -0.020 to -0.0202)
Answer with units must be linked to correct M2
For M3, units must be correct
Correct answer with appropriate units scores M1, M2 and M3 and possibly M1 in part (d) if not already given
Correct answer without units scores M1 and M2 and possibly M1 in part (d) if not already given
Answer of -240 / -0.24 means temperature of 25 used instead of 298 so scores M1 only
If ans $=+20 /+0.020$ assume $A E$ and look back to see if M1 and possibly M2 are scored

